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Abstract

The analytical method of wave and oscillation theory differential equations periodic solution building on the so-
called saw-tooth argument transformation base has been used in the paper series [V.N. Pilipchuk, in: International
Congress of Mathematicians, Zurich, 3—11 August 1994, Short Communications, 1994, p. 202; V.N. Pilipchuk, G.A.
Starusenko, Izvestiya Nastionaljnoj Akademii Nauk Ukrainy 11 (1997) 25 (in Russian)]. This approach has been de-
veloped further, where famous transformation has been generalized on non-symmetrical case. In the present paper the
non-symmetrical saw-tooth argument transformation method is suggested to apply to the elasticity theory periodic

problems. © 2002 Published by Elsevier Science Ltd.
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1. Main mathematical correlation for non-symmetrical
saw-tooth argument transformation

Let us denote by t=1(x) 4-periodic piece-linear
(saw-tooth) function defined on the period by the cor-
relation

) = { i),

here iy =1/(1+0), kh =—1/(1-0),—-1<0<1, 0 is
a parameter which is characterized the “saw” slope
(Fig. 1). Value 0 = 0 corresponds to symmetrical saw-
tooth function [3].

The function t = 7(x) utilization as new argument
allows to present any continuous 4a-periodic function
f(x) by the following correlation [2]:

<(1+0),

—(1+0)<x
" )x<(3—9), (1)

(1+0)<
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f(x)=P(x) +0(r)7, ©=r1(x/a), (2)
here

P(t) =0.5{(1 + 0)f[(1 + 0)ar1]
+ (1= 0)f[(2= (1= 0)r)al},
O(t) = 0.5{(1 — *}H{f[(1 + O)ar] — £[(2— (1 = O)7)a]}.

It is right for any value of x. Identity of correlation
(2) is verified by direct substitution on the period.
Observe some properties of non-symmetrical saw-
tooth function (1) which are used in the t-transfor-
mation algebra. In so doing we will suggest that the
function f'(x) in the correlation (2) is 4-periodic one (for
4a-periodic functions all argumentation are remained
valid with reference to the substitution t(x) — at(x/a)).
1. The function 7’ in the expression (2) has disconti-
nuities of the first kind in the points x: 7(x) = £1 (it is
not differentiable in classical sense in these points).
Therefore differentiation of the correlation (2)

df /dx = P'7 + Q7" + 0" (3)
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Fig. 1. Graph of saw-tooth function.

leads to appearance of the singular term Qt” (specialties
of Dirac d-impulses). They are localized in the points x:
T(x) = £1.

The singular term should be excluded when we con-
sider the function f(x) regularity by the condition
adoption

QO le=21= 0. 4)

2. Consider function v from correlation (3). The
expression for the square of derivative 7’ can be present
in the following form:

e :{1/(1+e)2, —(140) <x < (1+0),
1/(1=07, (1+0)<x<(3-0).

The correlation (5) can be presented with the help of
the function 7’ in the unanimous analytical expression
form:

(5)

‘L',z = Al + Az‘Cl, (6)

here A, = 1/(1 — 0%), Ay = —20/(1 — 0%).

Then the correlation (3) can be presented in the form
finally
df/dx = A0 + (P + A 0)7. (7)

3. It is essentially that the expression for 7 (6) (Dirac
d-function which has discontinuity in the points of lo-
calization of §-impulses type function) allows also to
determine the correlation 7't”. So when we offer that

71 =0.5(7") = 0.5(A; + Ay,

we will obtain

77" = —0/(1 — 0*)7". (8)
(For comparing 7’7" = 0 in the case of symmetrical saw-

tooth function. It has been shown yearly [1] and it is
obtained from the correlation (8) in particular.)

7
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Fig. 2. Graph of saw-tooth function derivative.

The correlation (8) allows to determine the value of
“saw’’ in the cone points x: 7(x) = =1. Consequently one
obtains that 7'(x) is determined in the form (Fig. 2):

1/(1+9), —(14+0) <x<(1+6),
7= —0/(1-0%), x=+(1+0),x=03-0), (9
—1/(1-0), (14+0)<x<(3-0).

2. Elasticity theory differential equations transformation
on the periodic solutions set

We will illustrate the application of saw-tooth argu-
ment transformation technique to the searching elastic-
ity theory periodic problem solution on the example of
two-phase layered composite massif problem. We will
consider that the structure is periodic one in the axis Ox
direction, for example, and its period is small sufficiently
if we compare it with characteristic massif dimension.
We will denote composite elastic characteristics — Lame
coefficients — as 4;, u; and 4, p, for any of layer ac-
cordingly; mass forces as — analogously.

Using definition of saw-tooth function (1) structure
the elastic constants and its mass forces can be presented
in the form of unanimous analytical expressions which
are right for whole layered massif.

P =M1 +od), (@) = u(l+pr), (10)

here T = t(x/a); 4a is period of structure.
The correlation (10) can be present in the other form
if we present it as

;vl(z) = /1(1 +k1(2)a)7 W) = ﬂ(l +k1(2>ﬁ)7 (11)

here indexes 1,2 indicate on the first or second composite
phases accordingly.

Such denomination (11) gives opportunity to change
layers elastic characteristics and mass forces if the pa-
rameters A, o, u, ff, and coefficients are modified and to
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change phases geometric dimensions if the parameter 0
is modified.

If we regard the correlation (10) the elasticity theory
equilibrium equations in displacement U, V, W can be
presented in the form [4]:

(A 4+ 20U Jox* + (U Jy* + 8*U /o)
+ (27 + 1) (2*V Joxdy + O* W Joxdxz)

+ (d2" /dx 4 2du* /dx)oU /ox
+di"/ox(dV /oy 4+ 0W [oz) + X* =0,

(A 42" )PV JOy* + w (*V /X + 8%V [d2)
+ (4 + p)(Q°U Joxdy + O* W [dydz)
+du*/dx(dU /Oy + 0V Jox) + Y =0,

(X" + 20" )O*W J32* + w (O*W Jox> + &* W /y?)
+ (2 4 w)(Q*U Joxdz + 8*V /dydz)
+du/dx(0U /oz + oW Jox) + Z* = 0.

(12)

Taking into account the representation (11) and ac-
counting structure changeable only in the axis Ox di-
rection the periodic problem solution is search in the
form

UR)=UY0) +UP ()Y, 1©=r1(x/a) (13)

Analogous representations take place for compilers
V, Wif we change U — V — W. If the correlation (13) is
differentiated and correlations (7) and (4) are taken into
account we will obtain

oU ox = { — kikpdU® /dz + [dU /d7

+ (ki + k2)dU® /d1]7'} /a, (14

U® | _=0. (15)

The second derivative is presented by the following
correlation:

FU /o ={ — ki [d*UY /A + (ky + kp)d* U /d7?]
+ [(k + kike + k5)d* U /d7?
+ (ky + k)d*UW jde ]
+ [dUW /dt + (ki + kp)dUP Jde|7" } P,
(16)

where OV /Ox, W [ox, O*V /ox?, &*W Jdx? are determined
analogously.

The expressions (14) and (16) (and analogous ones
for functions V, W) and correlations

dA"/dx = Jat"/a, dp/dx = ppt’/a

are substituted into the Eq. (12) and the coefficients
under the basis elements 1, 7 are equated. The periodic
singular terms are excluded by the condition adoption:

{dUW /de[(2 + 2p) + (Ao + 2uB) (ki + k2)]
+dUP Jde[(4+ 2p) (ky + k) + (Ao + 2uPB) (k]
+hiky + 1))} [eai=0,  {dVW/d[l + Bk + k)]
+dV? de((ki + k) + B + kika + k3] } e = 0,
v —w). (17)

Then the differential equations system for any pairs of
functions UM, U@,y @ wh W@ are obtained.
U /P[44 2u) + Qo+ 2uB) (k1 + k)]
+ U@ /A [( 4 2u) (ki + k)
+ (o4 2up) (K + bk + 13)] = X/ (ko)
U /a2 + 20)(ky + ko) (18)
+ (20 + 2uB) (k7 + kiks + K3)]
+d*U@ /A [(2 4 20) (k2 + koky + K2)
+ Qo4 2up) (ky + ko) (2 + i2)] = —a*X .

v /de (1 + Bk + k)] + 2V /dr?

[k + k) + Bk + ks +15)] = @YV / (ki ),
&V /A [(ky + ke) + BT + kika + 43|

+d* V2 /A (k) + kike + F3)

+ Bl + ko) (ki +13)] = =YD /i, (V= W).

(19)

By obvious transformations any of these systems
splits on the differential equations for functions UV,
UP(U — V — W). Thus, if we regard denomination
(11) the elasticity theory periodic problem for two-phase

layered composite is reduced to the following boundary
value problems:

d?uM/de = T X, + T X,
U /de? = THX, + T3 X,

(20)
U(Z) |r:i1: 07
{dUW /dzTyy +dU? /deTy,} |eesi= 0,
where
1Y) = d*ha/ (ki — k)R (00 + 2],
T =T (1 < 2),
T = =T ko, T = T{H(1 < 2),
Tyr = ki (4 +21) — ko (Ao + 21,),
Tun = K20 + 2u,) — I (Ja + 215).
V0 = T+ T
&y /de =100 + T, (21)

V(Z) |r:il: 03
{dvW /deTy, + dV? [deTyy} |ems1= 0,
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where 4.

1) = d’ho/[(ki = k)km),

=T (1=2), T)=-T7/k,

1y =171 = 2),

Tyi = whky — oky,  Tya = ki — k3,

vV —-w).

We will consider the limit cases of the boundary value
problems (20) and (21). They depend on the rigid and
geometrical composite phases characteristics. We will
consider that characteristics of the first phase are fixed

ones and characteristics of the second phase (inclusion)
are variable ones.

1. Equilateral phases: k; = 1, k; = —1. Then
Ty = —a* /20 + 2u)],
TN =Tl (1= 2), Ty =Ty,
1) = —TVrn(1 < 2),
Tyr = (4 + 22) +2(py + o),
Tya = (4 — 42) +2(1y — o), (22)

Tl(/ll> = —0.5a2/,u1, 6.

2 1 1 1
TI(/I) = TI(/I)(I = 2), Trsz) = Tr(n)?

2 1
TI(/Z) = _T152>(1 =2), Tn=uw+iu,
Ty =y — o

2. Homogeneous structure with the periodic mass
forces: 4y = A, = A, y; = 1, = u. Then

Ty = dho/ [k — k2)K2 (4 +2u)],

15 =1 (1 < 2), 7.

1 1 2 1
Ty = =Ty [k, T3 =Ty (1 = 2),
Tyy = (ki — k2) (2 + 2p),

Soft inclusions: 4,/2; < 1, p,/p; < 1. Then

7)) =0,

1) = —a*h/[(k = k)3 (2 +2p0)],

I =0, Ty =Tyl /k, Tui=1,

Tyn=h, T} =0, (25)
1) = ~d*h/[(k — k2)k ),

7)) =0, T3 =-T/k, Tn=1,

Tyr = k.

Soft inclusions which are free ones from mass forces
(in cavity limit): A/4 — 0, w/u; —0, X, =
Y, =7, =0. Then

Ty = a’ho/ [(ky — k2K (2 +21y)]
I =0, Ty) = ~Ty) ks,

Tl(le) =0, Tyi=1, Tnn=h,
Y = &/ (ki — k)],

Ty =0, T =Ty /k,

3 =0, Ti=1 Tp=kh.

(26)

Non-deformed thin inclusions (plates): 4,/4; — oo,

W/ — o0, ky = 0.5,k — —oo. Then

) = —4a /G + 2m),  TF =0,

Tl(le)Zle(Jll)/k% TL</22): o Tmm=1,

TU2 = kz, TI(,II) = —4(12//11, T,(/zl) = 0, (27)
1 1 2

Tr(/z) = _Tl(/l)/k27 Tvsz) =0,

=1, Tn=h.

Soft thin plates which are free ones from mass forces:
Jafl =0, py /iy — 0,k =05,k — —00, Xo =1, =
Z, =0.

In this case, it is possible the following asymptotic rep-

Ty = T (ki + k2), (23) resentation in dependence on geometrical and rigid pa-

Tr(/11> = aky [ [(ky — ky)KP 4, rameters:

T =T (1 = 2), T = _4? /(0 + 2u)),

T8 =1k, T = 13012, 190, -1k 12 —0, .

T =uk — k), Tro=Tnlk +k). T’(/ll) — 4y, T(SZI) —0, (28)
3. ?}l::lcl)lute rigid inclusions: 4,/ — 00, w,/1; — oo. T’(/lz) _ _TI(/II)/k27 TIE22) —0.

(a) kzj.z//{] < 1/k2(/1 — ,Lt)

1) = dho/ (ki — k)i (2 +2uy)],
T =0, 1 = -1 /k,

Tz(izz) =0, Tyi=1, Tyy=h,
T = @l /[(k — ko)l ],

67 =0, ) =-T)/k,

T =0, Ty=1, Ty=k.

(24)

TUl:TVlzly TUZZTVZZO.S. (281)

Ty = 0.5(1 + 2u),
Tya = 0.25(0) +2u)) — k2 (22 + 21,), (28.2)
TVz = TUI'()VI(Z) + 2/11(2) — [.11(2>), i= 1,2
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Fig. 3. Graph of transference ¥ (z) under 0 = 0, ul = 1, u2 = 20.
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Fig. 4. Graph of transference under 0 =0, ul =1, u2 = 0.05.

© 1k < koda) o < 17 — p)
Tyr = 0.5(4 +21),  Ton = —k3(Ja + 2u,),
Ty = Tui(Za) + 2o = ) =12
(d) k2dz/21 ~ 1(4 — p)
Tu1 = 0.5(41 +2p) — ko (22 + 2p),
Tyr = —k3 (22 + 2p), (28.4)
Ty = Tui(Za) + 2o = )y =12
(©) ko/l2/24 > 14— p)
Toi=Tn =1, Ty =Ty =h. (28.5)

(28.3)

It is worth to note that the boundary value problems
(20) and (21) (or analogous ones for them in particular
cases (22)—(27), (28), (28.1)—~(28.5) are compatible ones
and its solutions are determined up to any constant if
mass forces are self-balanced ones on the period or if the
following conditions

1
/ XV(r)dr =0(x" — vy — zW) (29)
-1

v
1 - ri:r2=1:0.05
2 - riira2=1:2
3 - ri:r2=1:20
109
0.06 /S S

05 P x

Fig. 5. Graph of transference under 6 = 0.9, ul =1, u2 = 20.
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0.15 R

=== x

0.14

Fig. 6. Graph of transference under § = 0.9, ul = 1, u2 = 0.05.

are satisfied.

Using condition of “slaw” (average) component ex-
clusion from the periodic solution which is determined
by the correlation

/1 UD () dr = 0(U — ¥ — W) (30)

1

we will obtain only periodic problem solution which is
defined by the only way finally.

The plain problem solution for two phases 4-periodic
structure under mass force effects in the axis Oy direction
has been obtained as illustrative example

Yio) = ne)-

In this case components of the function U = W = O.
The problem is reduced to functions ¥V (z1), ¥® (1) de-
termination from the boundary value problem (21) (if
a = [). From the correlation (29) we will obtain:
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Fig. 7. Graph of efforts g,, under 6 =0, ul =1, u2 = 20.

Vi) = n) — 1/2(n/ki — r/k)
= 1/(2k))(r2 = 1) (31)

This boundary value problem solution was obtained in
the form:

V(l)(‘f) = ((’”1 - ’”z)(/llklz - szg)/(24k?kgﬂlﬂz))

x (1 —37%), (32)
V() = ((r = r) (ki — woks) / (8K ) )
x (1 —1%).

The displacements V(1) graphs in dependence on the
different correlations of geometric and rigid character-
istic of composites phases you can see in Figs. 3-6 (0
defines geometric characteristic and p,, u, define rigid
characteristics; r,r, define mass forces).

Efforts o,, are determined from the correlation:

Oxy = *(k]kz/(kl — kz))[('ul — Hz)aV(l)/aT
+ (ki — poka )3V fo] + (1/ (ki — k2))

X (k= poka)OVY [0t 4 (ki — Mzkg)aV(z)/aT]f/~

(33)

o
- :r2=1:0.05
1 - riirz 9.49
2 - ri:r2=1:2

047

Fig. 8. Graph of efforts a,, under 0 = 0.9, ul =1, u2 = 20.

In this case we will obtain:
O = —(r1 — 1) (k1 — k2) /(4K K3).

Its graphs you can see on the Figs. 7 and 8.
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